Model-based design inspection based on traceability information models and design slicing

Shiva Nejati

April 15, 2015
About Me:

- Research Scientist at SnT Centre, U of Luxembourg since 2012

- Previous experience: Researcher at Simula Research Lab, Norway (2009-2012), PhD in Computer Science from U of Toronto (2008)

- Research Interests: Testing and verification of embedded real-time systems (aka cyber physical systems) using a combination of meta-heuristic techniques, formal methods, model-driven engineering techniques and empirical methods

- Research related to traceability: an industry-driven research project on certification and verification of safety-critical embedded systems using model-based software engineering techniques
Context of this Talk

Software Engineering for Safety-Critical Embedded Applications in the Maritime and Energy domain

Purpose:
- Supporting safety certification

Example application:
- Monitoring applications (fire and gas detection and emergency and process shutdown)

Software complexities
- Interaction with physical environment
- Real-time and concurrent
- Highly configurable
- Distributed and networked

Industry-driven project:
- ModelME! (2009-2011)
• Systematic study of the certification process and documents

1. Assessing and discussing software requirements, design/architecture and implementation documents (Several meetings taking place over 6 to 18 months)

2. Testing the devices in the field (A one week visit at the production site)
Observations from Safety Certification Projects

- Analyzed 66 distinct classification issues:
 - Issues collected through observing certification meetings at different suppliers of maritime and energy systems
 - Meetings focused on requirements, architecture, and design documents

![Graph showing the distribution of issues]

- Expensive to fix
Effective Inspection of Embedded System Designs

- A key aspect of safety assessment is to inspect the design of safety-critical embedded systems and ensure that the design satisfies the system’s safety requirements.

- Design of embedded systems is often model-based.

- Inspecting large design models is expensive and error-prone.

- Question: How can we narrow the focus of design inspections to model fragments that are relevant to safety?
Research Objective

- Generate a sound and yet minimal design slice for a given safety requirement

- Slices constructed based on traceability links established between safety requirements and design
Research Approach

Traceability Methodology

to relate safety Requirements to design

Slicing Algorithm

to extract a design slice relevant to a given safety requirement

Model Driven Engineering (MDE) is the enabler

(IST Journal 2012)
MDE Language

• System Modeling Language (SysML)

• A subset of UML extended with system engineering diagrams

• A standard for system engineering

• A preliminary support for requirement analysis and built-in traceability mechanism
Is SysML enough?

• Do we have proper guidelines for establishing traceability links between requirements and design?

 • *SysML is only a notation and needs a methodology*

• Are the built-in SysML traceability links capable of addressing certification traceability issues?
Research Approach

Traceability Methodology

to relate safety Requirements to design

Slicing Algorithm

to extract a design slice relevant to a given safety requirement
Traceability Information Model
Our Methodology for Requirement to Design Traceability

(I) System Requirement Specification
1. System Context Diagram
2. System-Level Requirements
3. Top-Level Use Cases

(II) System Design
4. System Decomposition
5. Communication Interfaces
6. Intra-Block Communication
7. Inter-Block Communication

Establish Traceability
8. Decompose System-Level Requirements
9. Re-express Requirements in terms of Block Operations and States

External Input

Step
Requirement to Design Traceability

Avoidance of falling metal blanks

decompose

The feed belt conveys a blank to table if the table is in load position

feedbelt.feed_table() causes "feed belt conveys a blank to table"

After executing table.go_load_position(), "table is in load position"

FeedBelt
- running:boolean
- blankAtEnd:boolean
- initialize()
- add_blank()
- feed_table()

Table
- pos:Table_Position
- loaded:boolean
- initialize()
- go_load_position()
- go_unload_position()
Traceability Methodology

to relate safety Requirements to design

Slicing Algorithm

to extract a design slice relevant to a given safety requirement
Design Slicing

Avoidance of falling metal blanks

decompose

The feed belt conveys a blank to table if the table is in load position

feedbelt.feed_table() causes "feed belt conveys a blank to table"

After executing table.go_load_position(), "table is in load position"

FeedBelt
- running: boolean
- blankAtEnd: boolean
- initialize()
- add_blank()
- feed_table()

Table
- pos: Table_Position
- loaded: boolean
- initialize()
- go_load_position()
- go_unload_position()
Slices

Avoidance of falling metal blanks

decompose

The feed belt conveys a blank to table if the table is in load position
Slicing Algorithm

• A slicing algorithm that for the given traceability links generates block and activity diagram slices

• Properties

 • If a requirement holds over a design slice, it should also hold over the original design (soundness)

 • Proven analytically (formal proof)

 • If a requirement holds over the original design, then the design slice created for that requirement should conclusively satisfy that requirement (completeness)

 • Evaluated empirically (Case studies and experiments)
Case Study: SW/HW Interfaces

Communicates commands and data between control modules and hardware

Goal: Practical guidelines to:
(1) Capture the concurrent design of interfaces
(2) Reduce the number and criticality of certification issues related to interfaces

(HASE 2011)
Usage in certification: showing the context in which the interface operates
Usage in certification: showing the communication ports, signals, multiplicities for interacting components
Activity Decomposition (Case Study)

Usage in certification: maintaining traceability between high-level activities and blocks
Internal Behaviour (Case Study)

Usage in certification: systematic expression of behavioral design at different levels of abstraction
Results

• Created design models with traceability to requirements

 • One context diagram (BDD), One architecture diagram (IBD), One detailed structure diagram (BDD), One activity decomposition diagram (BDD), One overall activity diagram, 19 detailed activity diagrams

• Created 65 traceability links for 30 safety-relevant requirements

• Modeling effort was approximately 40 person-hours

• Model Slicing

 • Extracted 34 block slices and 31 activity slices

 • Slicing reduced the number of block operations by 70% and the number of activity nodes by 50%
Tool Support

Customized traceability links
Controlled Experiment for evaluation of our approach

• conducted in a laboratory setting with master students

• Overall design

 • Seeded faults into the design

 • Incorrect behaviour and structure

 • Divided the subjects into two groups

 • One group gets the design without slices

 • One group gets the design plus the relevant slices
Experiment Results

• Main question: Do slices improve the identification of design faults?

• Slices show strong benefits in terms of:
 • Increasing the correctness of inspection decisions
 • Decreasing the proportion of uncertain decisions
 • Reducing the effort of inspections
Summary

- Our methodology avoids large majority of traceability and structuring issues by:
 - Prescribing what kind of diagrams to create
 - Providing heuristics about the level of details in diagrams
 - Giving guidelines for creating traceability links
Acknowledgement

- Lionel Briand
- Mehrdad Sabetzadeh
- Davide Falessi
- Antonio Messina
- Anne-Heidi Evensen Mills
- Thierry Coq
Industry-Driven Project

• Mode of collaboration with industry

• A refinement of the collaboration model by (Gorschek et al 2006)
Traceability in Certification

• Traceability mandated by many certification standards

 • IEC 61508, DO-178B, and the forthcoming Do-178C and ISO 26262

• Main problems observed:

 • Traceability links were either missing or not easily identifiable due to poor structuring

 • Most pressing issues concerned the link between safety requirements and software design

• Does my design satisfy the given safety requirements?