Testing Cyber Physical Systems via Evolutionary Algorithms and Machine Learning

Shiva Nejati
SnT, University of Luxembourg

SBST @ ICSE 2019
May 27, 2019
About SnT

• ICT research centre to fuel the national innovation system

• Part of the University of Luxembourg

40+ industry partners

20 MEUR turnover (70% external funding)

>100 M€

Acquired competitive funding since launch

60% of PhDs and RAs work on industry projects

>300 employees

51 nationalities
Software Verification and Validation Group (http://svv.lu)

- Established in 2012
- Requirements Engineering, Security Analysis, Design Verification, Automated Testing, Runtime Monitoring
- 5 faculty members (head: Lionel Briand)
- 11 research associates
- 13 PhD candidates
- 3 research fellows
- 10 current industry partnerships
- Budget 2018: ~2 M€
SVV Industry Partners

- SES and LuxSpace (Satellites)
- Delphi and IEE (Automotive)
- Government of Luxembourg
- HITEC (Emergency systems)
- BGL – BNP Paribas, Clearstream (Banking)
- Escent (MDE Coaching)
- QRA (Quality Assurance)
SVV Industry Partners

- SES and LuxSpace (Satellites)
- Delphi and IEE (Automotive)
- Government of Luxembourg
- HITEC (Emergency systems)
- BGL – BNP Paribas, Clearstream (Banking)
- Escent (MDE Coaching)
- QRA (Quality Assurance)
Mode of Collaboration

- Research driven by industry needs
- Realistic evaluations
- Combining research with innovation and technology transfer

Adapted from [Gorschek et al. 2006]
Acknowledgements

Raja Ben Abdessalem
Reza Matinnejad
Annibale Panichella
Lionel Briand
Cyber Physical Systems (CPS)
Model-based Development of CPS

Function Modeling

Model in the Loop (MiL)

Software Modeling/Development

Software in the Loop (SiL)

Integration of SW and HW

Hardware in the Loop (HiL)
Function Models

- are hybrid – capture both discrete (algorithms) and continuous (physical dynamics) computations
- are executable
- capture uncertainty e.g., about the environment

\[\dot{x}(t) = \dot{x}(0) + \frac{1}{M} \int_0^t F(\tau) d\tau \]

Thermostat:
- off: \(x' = -K \cdot x \)
- on: \(x' = K \cdot (H - x) \)

\[x \leq 19 \]
\[x \geq 17 \]
\[x \leq 23 \]
\[x \geq 21 \]

Dynamic System
Software Models

- capture software **architecture** and **real-time** constraints
- specify **performance**, **security**, and **timing** requirements
- are in charge of **integrating** different components
- are **heterogeneous**
Benefits of CPS Modelling

- Automated Code Generation
- Early Testing Verification
- Simulation/Prediction
- Certification

CPS Models
- Software Model
- Function Model
Benefits of CPS Modelling

Automated Code Generation

Simulation/Prediction

CPS Models

Software Model

Function Model

Early Testing Verification

Certification
Fundamental Questions

• What are the **useful and realistic models** of CPS?

• What **requirements** should CPS satisfy to meet their **safety standards**?

• What are the main challenges in developing **scalable and effective testing** techniques for CPS?
Simple Controller

Electronic dryer controller
Adaptive Controller

Cruise control system, Satellite controller
Automated Driving, Unmanned Aerial Vehicle, Smart IoT
Temporal/Real Time Requirements

- "As soon as braking is requested, the contact between Caliper and Disk shall occur within 20ms"

- "The system shall respond within 32ms"
Controller Requirements

- Stability
- Smoothness
Autonomous Systems

- Perception and decision requirements
 - “The car shall detect all obstacles ahead of the vehicle within 100m distance.”
 - “An unintended braking manoeuvre by the Automated Emergency Braking shall be prevented.”

- Behavioral Safety

- Driving Behavior Comfort

- Energy Efficiency

 ...
CPS Verification Challenge

- Analytical techniques and exact solvers cannot be applied to CPS models due to
 - non-linear, non-algebraic computations
 - continuous dynamic behaviours
 - heterogeneity
CPS test input spaces are large and multi-dimensional.
Metaheuristic Search

- **Stochastic optimisation**, e.g., evolutionary computing
- Efficiently explore the search space in order to find good (near optimal) feasible solutions
- Applicable to any search space irrespective of the size
- **Flexible** and can be combined with different optimisation methods
- Amenable to analysis of heterogeneous models
- Applicable to many practical situations, including SW testing
Our Approach in a Nutshell

- Test Input Generation
- Guided Search
- Optimisations via Machine Learning
Structured Test Inputs

- Domain models
- Vectors and constraints
Genetic Algorithms

Search algorithms inspired by the theory of evolution
Genetic Algorithms

Search algorithms inspired by the theory of evolution

Initial test inputs
Genetic Algorithms

Search algorithms inspired by the theory of evolution

Initial test inputs

Fitness computation (which test is more likely to reveal faults?)
Genetic Algorithms

Search algorithms inspired by the theory of evolution

Initial test inputs

Fitness computation (which test is more likely to reveal faults?)

Select the most critical tests (the ones more likely to reveal faults)
Genetic Algorithms

Search algorithms inspired by the theory of evolution

- Initial test inputs
- Fitness computation (which test is more likely to reveal faults?)
- Select the most critical tests (the ones more likely to reveal faults)
- Bread (generate new tests using Genetic operators)
Genetic Algorithms

Search algorithms inspired by the theory of evolution

Initial test inputs

Fitness computation (which test is more likely to reveal faults?)

Select the most critical tests (the ones more likely to reveal faults)

Bread (generate new tests using Genetic operators)
Why Do We Need Additional Optimizations?

- Few objective function evaluations are possible because executing/simulating CPS function models is expensive.
 - They should be executed for a long enough time duration.
 - They capture, in addition to software/controllers, models of hardware and environment.
- Several local-optima.
- Large and multi-dimensional search input spaces.
Machine Learning and Search

- Learning where the most critical regions are
- Learning fitter solutions instead of breading them
- Predicting fitness values instead of computing them
- Selecting effective search algorithms and tuning their parameters
- ...
Industrial Research Projects
Testing Automated Driving Systems
Automonomous Car Features

Automated Emergency Breaking (AEB)

Traffic Sign Recognition (TSR)
Testing Models of Automated Driving Systems

SUT

Sensor/Camera Data → Autonomous Feature → Actuator Command

Physics-based Simulators

roads

sensors

cars

pedestrians

traffic rules

actuators

weather situation

infrastructure
Testing Models of Automated Driving Systems

Physics-based Simulators

SUT

Sensor/Camera Data → Autonomous Feature → Actuator Command

roads

sensors

actuators

traffic rules

weather situation

infrastructure

cars

pedestrians

Time Stamped Vectors
Testing Models of Automated Driving Systems

We use PreScan, a commercial physics-base simulator
Test Inputs/Outputs

Environment inputs
Mobile object inputs
Outputs

Weather
- weatherType: Condition

Road
- roadType: RT

SceneLight
- intensity: Real

«enumeration»
Condition
- fog
- rain
- snow
- normal

Test Scenario
- simulationTime: Real
- timeStep: Real

RoadSide Object

Trees

Parked Cars

Camera Sensor
- field of view: Real

«uses»

Vehicle
- v0: Real

Collision
- state: Boolean

Detection
- certainty: Real

Pedestrian
- x0: Real
- y0: Real
- θ: Real
- v0: Real

Position
- x: Real
- y: Real

Output Trajectory
- AWA

Dynamic Object

AEB

Test Scenario

«positioned»
System Safety Requirements

- **Req1**: “Automated Emergency Braking (AEB) shall detect pedestrians in front of the car and stop the car when there is a risk of collision”

- **Req2**: “An unintended manoeuvre by AEB shall be prevented”

- **Fitness functions** estimate how close AEB is into violating its requirements (e.g., by having a collision)
Guided Test Generation

Test input generation
- Select best tests
- **Generate new tests (Genetic Operators)**

Evaluating test inputs
- **Simulate** every (candidate) test
- Compute **fitness functions**

Tests revealing requirements violations

Fitness values
Guided Test Generation

Test Input Characterisation

Test input generation
- Select best tests
- Generate new tests (Genetic Operators)

Evaluating test inputs
- Simulate every (candidate) test
- Compute fitness functions

Fitness values

Tests revealing requirements violations
Guided Test Generation

Test input generation

- Select best tests
- Generate new tests (Genetic Operators)

Evaluating test inputs

- Simulate every (candidate) test
- Compute fitness functions

Tests revealing requirements violations

But, simulations are expensive to run!
Surrogate Models

• It takes 8 hours to run our search-based test generation (≈500 simulations)

→ We use **surrogate models** developed based on machine learning to reduce the number of fitness computations

 • We first train a model based on a large number of simulations

 • We use this model during the search to predict fitnesses instead of actually computing them, but …
Guided Test Generation

Test Input Characterisation

Test input generation
- Select best tests
- Generate new tests (Genetic Operators)

Evaluating test inputs
- Simulate every (candidate) test
- Compute fitness values

Tests revealing requirements violations
Test Generation with Surrogates

Test Input Characterisation

- Select best tests
- **Generate new tests (Genetic Operators)**

- **Predict the fitness and the error (surrogate)**
- If the test is likely to be selected
 - **Simulate** the test
 - Compute the fitness

Tests revealing requirements violations
Archive (A)

New Population (P)

- simulated
- not simulated
Archive (A) + New Population (P)
Simulate and compute fitnesses F
Archive (A)

New Population (P)

Simulate and compute fitnesses F $A + P$

Rank

Select

- simulated
- not simulated
A simulated
not simulated

P
Predict fitnesses $\hat{F} \pm error$
A + P

A

P

Predict
fitnesses
\(\hat{F} \pm \text{error} \)

\(\hat{F} - \text{error} \)

Optimistic
Rank

\(\hat{F} + \text{error} \)

Pessimistic
Rank

simulated
not simulated
Predict fitnesses $\hat{F} \pm \text{error}$

$A + P$ Optimistic Rank

$\hat{F} - \text{error}$

$\hat{F} + \text{error}$

Selected Archive

(simulated)

(not simulated)
1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate
1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate
1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate
1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate
1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate
1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate
1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate
1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate
1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate
1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate
1. Select best simulated elements from Optimistic Rank.
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses.
3. Re-rank and re-iterate.
Pessimistic Rank

Optimistic Rank

1

2

3

1. Select best simulated elements from Optimistic Rank
2. Select best not-simulated elements from Pessimistic Rank, simulate them and compute their fitnesses
3. Re-rank and re-iterate

Predicted values are only used to bypass simulations for unfit individuals
Comparing Search w/ and w/o Surrogate

Search with surrogate models generates higher quality solutions than search without surrogate models.
Comparing Search w/ and w/o Surrogate

Search with surrogate models generates higher quality solutions than search without surrogate models
Guided Test Generation

Test Input Characterisation

Test input generation

• Select best tests
• **Generate new tests (Genetic Operators)**

Evaluating test inputs

• Simulate every (candidate) test
• Compute **fitness values**

Tests revealing requirements violations

Fitnesses
Test Generation Guided by Classification

- Build a classification tree
- Select/generate tests in the fittest regions

- Simulate every (candidate) test
- Compute **fitness values**

Tests revealing requirements violations + Failure Explanations
Genetic Evolution Guided by Classification

1. Initial Inputs
2. Fitness Computation
3. **Classification**
4. Selection
5. Breeding
Genetic Evolution Guided by Classification

1. Initial Inputs
2. Fitness Computation
3. Classification
4. Selection
5. Breeding
Genetic Evolution Guided by Classification

1. Initial Inputs
2. Fitness Computation
3. Classification
4. Selection
5. Breeding

Fitnesses:
F1. Min distance between pedestrian and the car
F2. Speed of the car at the time of collision
Genetic Evolution Guided by Classification

1. Initial Inputs ✓
2. Fitness Computation ✓
3. Classification ✓
4. Selection
5. Breeding

Label:
\((F1 < \text{threshold1}) \land (F2 > \text{threshold2})\)
Genetic Evolution Guided by Classification

1. Initial Inputs
2. Fitness Computation
3. Classification
4. Selection
5. Breeding

Label:
\((F1 < \text{threshold1}) \land (F2 > \text{threshold2})\)
Genetic Evolution Guided by Classification

1. Initial Inputs ✓
2. Fitness Computation ✓
3. Classification ✓
4. Selection ✓
5. Breeding
Failure Explanation

- A characterisation of the input space showing **under what conditions the system is likely to fail**

- Path conditions in the decision tree

- Visualized by decision trees or dedicated diagrams
Results

• Does the decision tree technique help **guide** the evolutionary search and make it more **effective**?

• **Search** with decision tree classifications can find 78% more **distinct, critical test scenarios** compared to a baseline search algorithm

• Does our approach help **characterize** and **converge** towards **homogeneous** critical regions?

• The generated critical regions consistently become **smaller**, **more homogeneous** and **more precise** over successive tree generations
Usefulness

• The characterisations of the different critical regions can help with:

 (1) **Debugging** the system or the simulator

 (2) **Identifying hardware changes** to increase ADAS safety

 (3) **Identifying proper warnings** to drivers
Sensor/Camera Data → Autonomous Feature → Actuator Command

Actuator Commands:
- Steering
- Acceleration
- Braking
Actuator Commands:
- Steering
- Acceleration
- Braking
Feature Interaction Problem

Actuator Commands:
- Steering
- Acceleration
- Braking
Undesired Feature Interactions

Actuator Commands:
- Steering
- Acceleration
- Braking
Using search-based testing to detect undesired feature interactions among function models of self-driving systems
Our Fitness Function

- A combination of three heuristics
 - Coverage-based
 - Failure-based
 - Unsafe overriding
Coverage-based Objective

Goal: Exercising as many decision rules as possible

SUT

F1

F2

...

Fn

if (condition)

F1

Decision Logic
Failure-based Test Objective

Goal: Revealing violations of system-level requirements

Example:
- Req: No collision between pedestrians and cars
- Generating test cases that minimize the distance between the car and the pedestrian
Feature Interaction Test Objective

Goal: Finding failures that are more likely to be due to faults in the integration component rather than faults in the features.
Feature Interaction Test Objective

Goal: Finding failures that are more likely to be due to faults in the integration component rather than faults in the features
Feature Interaction Test Objective

Goal: Finding failures that are more likely to be due to faults in the integration component rather than faults in the features
Goal: Finding failures that are more likely to be due to faults in the integration component rather than faults in the features
Feature Interaction Test Objective

Goal: Finding failures that are more likely to be due to faults in the integration component rather than faults in the features

Reward failures that could have been avoided if another feature had been prioritised by the decision rules
On Hybrid Fitness Function

One hybrid test objective $\Omega_{j,l}$ for every rule j and every requirement l
On Hybrid Fitness Function

One hybrid test objective $\Omega_{j,l}$ for every rule j and every requirement l.

$$\Omega_{j,l}(tc) > 2$$

tc does not cover Branch j
On Hybrid Fitness Function

One hybrid test objective $\Omega_{j,l}$ for every rule j and every requirement l

$$\Omega_{j,l}(tc) > 2$$

tc does not cover Branch j

$$2 \geq \Omega_{j,l}(tc) > 1$$

tc covers branch j but F is not unsafely overriden
On Hybrid Fitness Function

One hybrid test objective $\Omega_{j,l}$ for every rule j and every requirement l

\[
\Omega_{j,l}(tc) > 2 \quad \text{tc does not cover Branch } j
\]

\[
2 \geq \Omega_{j,l}(tc) > 1 \quad \text{tc covers branch } j \text{ but F is not unsafely overridden}
\]

\[
1 \geq \Omega_{j,l}(tc) > 0 \quad \text{tc covers branch } j \text{ and F is unsafely overridden but req } l \text{ is not violated}
\]
On Hybrid Fitness Function

One hybrid test objective $\Omega_{j,l}$ for every rule j and every requirement l

$\Omega_{j,l}(tc) > 2$ \hspace{1cm} tc does not cover Branch j

$2 \geq \Omega_{j,l}(tc) > 1$ \hspace{1cm} tc covers branch j but F is not unsafely overridden

$1 \geq \Omega_{j,l}(tc) > 0$ \hspace{1cm} tc covers branch j and F is unsafely overridden but req l is not violated

$\Omega_{j,l}(tc) = 0$ \hspace{1cm} A feature interaction failure is likely detected
Search Algorithm

- **Goal:** Computing a test suite that covers all the test objectives

- **Challenges:**

 - The number of test objectives is large:

 \[
 \text{# of requirements} \times \text{# of rules}
 \]

 - Computing test objectives is computationally expensive

 - Not a Pareto front optimization problem

 - Objectives **compete** with each others, e.g., cannot have, in a single test scenario, a car that violates the speed limit after hitting the leading car
MOSA: Many-Objective Search-based Test Generation

Not all (non-dominated) solutions are optimal for the purpose of testing

Panichella et. al. [ICST 2015]
MOSA: Many-Objective Search-based Test Generation

Not all (non-dominated) solutions are optimal for the purpose of testing

These points are better than others

Panichella et. al. [ICST 2015]
(a) \textit{SafeDrive1}

(b) \textit{SafeDrive2}

Number of feature interaction failures

Time (h)

Hybrid
Coverage-based
Failure-based
Hybrid test objectives reveal significantly more feature interaction failures (more than twice) compared to baseline alternatives.
Feedback from Domain Experts

• The failures we found were due to undesired feature interactions

• The failures were not previously known to them

• We identified ways to improve the decision logic (integration component) to avoid failures

Example Feature Interaction Failure
Luxembourg Emergency Management System

• Goal: Monitoring emergency situations and providing a robust communication platform for disaster situations

• Requirements

 • Resilience

 • Maintaining an acceptable level of quality of service in the face of emergency situations
Concluding Remarks
Search-Based Testing

- Versatile
 - Can be applied to complex systems (non-linear, non-algebraic, continuous, heterogeneous)
 - Can be used when systems have black box components or rely on computer simulations
- Scalable, easy to parallelize
- Can be combined with: Machine learning, Statistics, Solvers, e.g., SMT and CP
Conclusions

• **Contextual factors** influence both the significance of a problem and the shape of the solution

 • Our context: function models capturing CPS continuous dynamics, functional requirements and simulators capturing environment and hardware

• Focus on **system-level** testing

 • Not just on the **perception** layer (DNN) or the **decision** layer or the **control** layer

• We have to deal with **computational complexity, heterogeneity and very large input spaces**
• Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, Thomas Stifter, “Testing vision-based control systems using learnable evolutionary algorithms”, ICSE 2018: 1016-1026

• Annibale Panichella, Fitsum Meshesha Kifetew, Paolo Tonella, “Reformulating Branch Coverage as a Many-Objective Optimization Problem”, ICST 2015: 1-10

We are hiring!

Talk to me if you are interested in research positions in any of the following areas: **Applied Machine Learning, Applied Natural Language Processing, Automated Verification and Validation, Information Retrieval, Model-driven Engineering, Program Analysis, Requirements Engineering, Software Security, Software Testing**