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• Part of the University of Luxembourg

• Focused on industry-driven research and innovation

• 24 MEUR turnover in 2017 (70% competitive)

• Headcount >260, >45 nationalities

• Most highly-cited scientists in Luxembourg

• CS @ UL ranked 58 in the world

• 31 industry and public-service partners

• 60 industrial PhD candidates (60% of total)

• 50 Research Associates (60% of total)

• FNR Public-Private Partnership programs

2

SnT Centre for Security, 
Reliability and Trust



SVV Lab Overview
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• Established in 2012

• Requirements Engineering, Security Analysis, Design Verification, 
Automated Testing, Runtime Monitoring

• ~ 25 lab members

• Eight partnerships

• ERC Advanced Grant

• Budget 2016: ~2 Meuros



Mode of Collaboration

• Strong emphasis on applied research, driven by needs
• Tight, large-scale industrial collaborations
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Meeting Objectives

• Discuss partnership on testing and verifying Simulink models (i.e., 
controllers, plant)

• Significant funding with ERC grant and co-funding with FNR (Luxembourg 
funding agency)

• Refine the objectives in current proposal

• Demo our existing tools
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Meeting Agenda
• March 2nd

• 11:30am – 12:30pm  Discussing ASTech models

• 2pm – 3pm  Meeting with Bjorn Ottersten, SnT Director

• 3 pm – 5pm Technical presentations (Audi, SnT)

• March 3rd

• 9am – 11am Technical presentation (Cnted)  + demos

• 11 am – 12pm Discussions (collaboration, partnership)

• 2pm – 4pm Discussions (collaboration, partnership)
6



ASTech Models



SVV Technical Presentation 



Outline
• Introduction

• Testing cyber-physical systems (ERC advanced grant)

• Automated testing of embedded software systems

• Testing closed-loop controllers

• Testing Simulink models

• Fault Localization of Simulink models

• Other projects in the automotive domain

• Proposals for ASTech-SnT collaboration

9



Testing Closed Loop 
Controllers



37

Initial
Desired Value

Final
Desired Value

time time

Desired Value

Actual Value

T/2 T T/2 T

Test Input Test Output

Plant Model

+
+

+

⌃

+
-

e(t)

actual(t)

desired(t)

⌃

KP e(t)

KD
de(t)
dt

KI

R
e(t) dt

P

I

D

output(t)



Requirements and Test Objectives
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Requirements and Test Objectives
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As soon as braking is requested, the contact
between caliper and disk should occur within 32ms

Requirement:

Min{Max{Max{|x(t)� (x0 + ✏)|, |x(t)� (x0 � ✏)|}}t0tT }

x0 + ✏

x0 � ✏

x0

x(t)

t0 = 32ms



Continuous Controller Tester
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Inject Bug Finding Seeded Faults



Summary

• We found several interesting test scenarios (worst cases) 
during Model-in-the-Loop (MiL) testing compared to what  
our partner had found so far

• These scenarios are also run at the Hardware-in-the-Loop 
(HiL) level, where testing is much more expensive: 

MiL results -> test selection for HiL
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Testing Simulink Models
(Closed Loop and Open Loop 

Controllers)



Objectives

• Testing Simulink/Stateflow models in their entirety

• Without requiring plant models  

• Without requiring automated test oracles
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Simulink Testing Challenge I

Incompatibility 

Existing testing techniques are not applicable to 
simulation models (with time-continuous behaviors)
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Applicable Not Applicable 

Simulation Model Code Generation 
Model



Simulink Testing Challenge II

Low Fault-Revealing Ability

Existing testing techniques make unrealistic 
assumptions about test oracles
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Faulty Model Output
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Correct Model Output

Low Fault-Revealing Ability 
Example

Covers the fault and Covers the fault but 

is Likely to reveal it is very unlikely to reveal it



Our Approach

Search-based  Test Generation Driven 
by Output-Diversity and Anti-Patterns
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Search-Based Test Generation

Initial Test Suite

Slightly Modifying
Each Test Input

Repeat

Until maximum resources spent 

S Initial Candidate Solution 

Search Procedure

R Tweak (S)

if  Fitness (R) > Fitness (S)

S R 

Return S

Output-based Heuristics



Output-Based Heuristics 

Failure Patterns

Output Diversity
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Failure-based Test Genration
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Instability Discontinuity

• Maximizing the likelihood of presence of specific failure 
patterns in output signals
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Output Diversity -- Vector-Based
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Time
Output Signal 2
Output Signal 1



55

Output Diversity -- Feature-Based
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Evaluation

How does the fault revealing 
ability of our algorithm 
compare with that of 

Simulink Design Verifier?



Simulink Design Verifier (SLDV)

• Underlying Technique: Model Checking and SAT 
solvers 

• Test objective: Testing is guided by structural 
coverage
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Our Approach vs. SLDV
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Faults 1    2     3    4    5    6    7    8     9   10   11

12  13  14  15  16   17  18  19  20   21  22

SLDV

SLDV

5   14   2   20  20  20  20  20  20  15  15

Faults

SLDV could not find the 
faultSLDV found the fault

20  16  20  11   5   20  14  17  11  20   4Our
Approach

Our
Approach

• Our approach outperformed SLDV in revealing faults

# The number of fault-revealing 
runs of our algorithm (out of 20)



SimCoTest Tool

https://sites.google.com/site/simcotesttool/

https://sites.google.com/site/cocotesttool/
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SimCoTest
Simulink Controller Tester

https://sites.google.com/site/simcotesttool/
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Summary
• We evaluated SimCoTest on seven representative Delphi 

Simulink models and one model from Bosch research lab

• Hands-on tutorial to ten Delphi engineers:

• “SimCoTest is useful for early stages of controller design to 
identify and detect design flaws.”

• We found some issues in Delphi models 

• We plan to follow further development of SimCoTest and its 
commercialization



Tool Demos



Case Study
• Electro-Mechanical Braking (EMB)

• A public-domain model developed 
by the Bosch Research lab 
(http://cps-vo.org/node/20289)

• EMB Simulink model

• Consists of a physical plant model, a PID controller and a state-
flow 

• Is simulated by a variable-step solver

• Contains float variables and float computation

62

http://cps-vo.org/node/20289


Demo of SimCoTest

• SimCoTest is able to identify the following error patterns in 
EMB output

• Oscillation (marginal stability)

• Discontinuity 

• Growth to infinity  (instability and not marginally stable) 
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Fault Localization in 
Simulink Models

64



4

1

2

5

3

� [Look-up
Table]

10 � [Switch]

273.15
�

�

[Switch]

1

2

NMOT

Clutch

Bypass

pIn

TIn

pOut

TOut

Pct2Val

-K-
N_SC PressRatioSpd

SC_Active
FlapIsClosedFlapPosThreshold

0 C T_C2K Incr�

1

2

1

2

3

1

1

2000

�

���

�

 ÷

�

�
�

�

0.15

Pmax

IncrPres
LimitP

T_K2C

TScaler

dT

CalcT

�

1.2
p_Co

dp

Subsystem1

Subsystem2

�

�-150
pComp pAdjust

1000

Fault Localization

65

A Simulink model

A test 
suite



Statistical Debugging
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Test
suite

t1
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t3
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Output2	



Statistical Debugging
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Test
Suite Status
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Statistical Debugging
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Statistical Debugging
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Statistical Debugging
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Ranking

• Simulink blocks are ranked 
according to likelihood of causing 
output failures

• Engineers inspect Simulink blocks 
using the generated ranking to 
identify faulty block(s)
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Block Score

b3 1.0

b7 0.6667

b11 0.6667

b1 0.5

b5 0.5

b6 0.5

b8 0.5

b12 0.5

b2 0.0

b4 0.0

b9 0.0

b10 0.0



Results
• We have developed, SimFL, a tool for automated fault 

localization of Simulink models

• Our tool is able to help localize multiple faults in Simuilnk
models

• SimFL has been applied to three large Simulink models with 
400 to 800 blocks containing two to five faults

• Using SimFL engineers need to inspect less than 3% of the 
model blocks on average to localize faults 
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Statistical Debugging: 
Drawbacks
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Ranking Score

b6 1

b2 0.5

b3 0.5

b5 0.5

b7 0.5

b8 0.5

b9 0.5

b10 0.5

b12 0.5

b13 0.5

b14 0.5

b1 0

b4 0

b11 0

• Faulty blocks may not be 
ranked high

• Many blocks may have the 
same score

• Engineers may have to 
inspect many blocks until 
they find the faulty block(s)



Performance Improvement
• Engineers may fail to find fault(s) after inspecting the top rank 

blocks 

• Our improvements: 

• Extending the test suites with test cases targeted at 
revealing test cases

• Identifying heuristics to help engineers know situations 
where statistical ranking cannot be further 
refined/improved
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Tool Demo



ASTech-SnT collaboration



Topics

• Stability analysis of nonlinear systems

• Analysis of performance and simulation (execution) time of 
Simulink models
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Stability Analysis

• Identifying the parts of the input space of a Simulink model 
that may lead to violation of system stability requirements 

• Identifying root causes of erroneous/unstable behaviors

• Investigating whether the problematic input regions can be 
reduced by automatic parameter tuning
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Analysis of Performance and 
Simulation Time 

• Identifying inputs, configurations, or blocks that are 
responsible for simulation slowdown

• Severe performance degradations after changes in models 
(regression performance analysis)

• Proposing ways to improve the simulation performance
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.lu
software verification & validation
VVS

Automated Testing and Verification 
of Cyber-Physical Systems

Software Verification and Validation (SVV) Lab
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg



Testing via Physics-based 
Simulation
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Testing via Simulation 
(Limitations) 

• Simulation scenarios are generated manually

• There are many simulation scenarios

• No guidance as to which scenarios should be selected to test 
the system
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Our Approach

• Automated testing of complex ADAS via physics-based 
executable models of these systems and their environments

87

Challenges Our solution

Test input is large Metaheuristic search to focus testing
on worst case/critical behaviors

Simulation takes time Surrogate models to predict the
simulation outcome without running 
simulations



PeVi Requirement 
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• Test objectives critical aspects:

• Time-To-Collision (TTC) is small

• The pedestrian is located near the car

• The pedestrian is at the boundary of the AWA

The PeVi system shall detect any pedestrian located 
in the Acute Warning Area (AWA) of a vehicle



Our Search-based Test 
Generation

• We use multi-objective search algorithm to generate test cases

• Three objectives: Minimum Distance to Car min{D(P/Car)}, 
Minimum Time To Collision Min{TTC}, and Minimum Distance to 
AWA Min{D(P/AWA)}

• Input a vector (car-speed, person-speed, person-position (x,y), 
person-orientation)

• Each search iteration calls simulation to compute objectives
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Evaluation
• Given the same execution time, our approach is able to produce 

higher quality solutions than baseline methods (Random Search)

• We provided engineers with 20 scenarios representing risky 
situations (no detection in AWA, collision/no detection) by varying 
weather conditions, roadside objects and ramped/curved road

• Scenarios helped engineers identify several critical behaviors of 
PeVi that have not been previously identified by manual 
simulation

• The scenarios are available at: 
https://sites.google.com/site/testingpevi
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An example critical scenario
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Conclusion

92

• An automated effective testing approach for ADAS

• Formulated the generation of critical test cases as a multi-
objective search problem using the NSGA2 algorithm

• Improved the search performance, while maintaining the 
accuracy, using surrogate models based on neural networks

• Generated some critical scenarios: no detection in the AWA, or  
collision and no detection



Model-based development of 
control systems 
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Hardware-in-the-Loop 
Stage

Model-in-the-Loop  
Stage

Simulink Modeling

 Generic 
Functional

Model

MiL Testing

Software-in-the-Loop 
Stage

Code Generation
and Integration

Software Running 
on ECU

SiL Testing

 Software
Release

HiL Testing



Simulink Testing Challenges

• Complex models with several hundreds of blocks

• Mix of continuous and discrete behaviour

• Captures both hardware/physical components and 
software/algorithms

• Mix of fixed-point and floating point computations
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Controller Properties: 
Smoothness

95
T/2 T

Test Objective is to  
maximize O_sm

O_sm



Controller Properties: 
Responsiveness
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Test Objective is to  
maximize O_r

O_r



Signal Features Classification
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• We define a set of  basic features characterizing distinguishable 
signal shapes



Feature Functions
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• For each feature f in our feature classification, we define a 
feature function Ff

• For a signal sg, the value of Ff(sg) quantifies the similarity 
between shapes of the signal sg and the feature f

k.�t0

Always increasing

Ff (sg) =
KP
i=1

((sg(i ·�t)� sg((i� 1) ·�t)))�

|sg(i ·�t)� sg((i� 1) ·�t))|)

The higher the value of Ff(sg), 
The more similar sg is to f 
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Output Diversity
Test Suite Generation Algorithm

O is either Ov or OfRepeat

Until maximum resources spent 

P Initial number of segments 

Test Suite Gneration Algroihtm

TS Tweak (TS, P)

If O (TS) > O (Best)   

Best TS 

Return TS

TS Initial test suiteBest 

Execute (TS) 

P P + 1

If (Coverage has reached a plateau less than 100%) 

A whole test suite 
generation algorithm



Failure patterns for Continuous 
Outputs
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SimCoTest Maturity

• Hands-on tutorial to ten Delphi engineers:

• “SimCoTest is useful for early stages of controller design to 
identify and detect design flaws.”

• We are currently applying SimCoTest to a number of newly 
developed (cutting edge) Delphi Controller models to help 
engineers with testing/verification, and to better demonstrate 
practical usefulness of SimCoTest
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Failure-based Test Generation 
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Instability Discontinuity
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Comparing SimCoTest with 
Simulink Design Verifier

103

Fault No. 1 2 3 4 5 6 7 8 9 10 11
20

*SLDV

#OurApproach 16 11 5 20 14 17 11 20 4

12 13 14 15 16 17 18 19 20 21 22

*SLDV

20

20

20 20 15 15

Fault No.

No No No No No No No No No No

No YES

No

No No No No

* Did SLDV reveal the fault? (Yes/No)

#OurApproach 20 20

No

145 2 20

No No No No

# Number of Fault Revealing Runs of our algorithm (Out of 20)

The only fault found by SLDV (fault 17), was also found by 
SimCoTest with very high probability


