
.lu
software verification & validation
VVS

Software Verification and Validation Laboratory

svv.lu

• Part of the University of Luxembourg

• Focused on industry-driven research and innovation

• 24 MEUR turnover in 2017 (70% competitive)

• Headcount >260, >45 nationalities

• Most highly-cited scientists in Luxembourg

• CS @ UL ranked 58 in the world

• 31 industry and public-service partners

• 60 industrial PhD candidates (60% of total)

• 50 Research Associates (60% of total)

• FNR Public-Private Partnership programs

2

SnT Centre for Security,
Reliability and Trust

SVV Lab Overview

3

• Established in 2012

• Requirements Engineering, Security Analysis, Design Verification,
Automated Testing, Runtime Monitoring

• ~ 25 lab members

• Eight partnerships

• ERC Advanced Grant

• Budget 2016: ~2 Meuros

Mode of Collaboration

• Strong emphasis on applied research, driven by needs
• Tight, large-scale industrial collaborations

4

Meeting Objectives

• Discuss partnership on testing and verifying Simulink models (i.e.,
controllers, plant)

• Significant funding with ERC grant and co-funding with FNR (Luxembourg
funding agency)

• Refine the objectives in current proposal

• Demo our existing tools

5

Meeting Agenda
• March 2nd

• 11:30am – 12:30pm Discussing ASTech models

• 2pm – 3pm Meeting with Bjorn Ottersten, SnT Director

• 3 pm – 5pm Technical presentations (Audi, SnT)

• March 3rd

• 9am – 11am Technical presentation (Cnted) + demos

• 11 am – 12pm Discussions (collaboration, partnership)

• 2pm – 4pm Discussions (collaboration, partnership)
6

ASTech Models

SVV Technical Presentation

Outline
• Introduction

• Testing cyber-physical systems (ERC advanced grant)

• Automated testing of embedded software systems

• Testing closed-loop controllers

• Testing Simulink models

• Fault Localization of Simulink models

• Other projects in the automotive domain

• Proposals for ASTech-SnT collaboration

9

Testing Closed Loop
Controllers

37

Initial
Desired Value

Final
Desired Value

time time

Desired Value

Actual Value

T/2 T T/2 T

Test Input Test Output

Plant Model

+
+

+

⌃

+
-

e(t)

actual(t)

desired(t)

⌃

KP e(t)

KD
de(t)
dt

KI

R
e(t) dt

P

I

D

output(t)

Requirements and Test Objectives

38

In
iti

al
 D

es
ire

d
(ID

)
Desired ValueI (input)
Actual Value (output)

Fi
na

l D
es

ire
d

(F
D

)

time
T/2 T

Smoothness

Responsiveness

Stability

We identify high risk behaviors by maximizing test objectives

Requirements and Test Objectives

39

As soon as braking is requested, the contact
between caliper and disk should occur within 32ms

Requirement:

Min{Max{Max{|x(t)� (x0 + ✏)|, |x(t)� (x0 � ✏)|}}t0tT }

x0 + ✏

x0 � ✏

x0

x(t)

t0 = 32ms

Continuous Controller Tester

40

HeatMap
Diagram

1. Exploration
List of
Critical
RegionsDomain

Expert

Worst-Case
Scenarios

+
Controller-

plant
model

Objective
Functions
based on

Requirements
2. Single-State

Search

In
it

ia
l D

es
ir

ed
 V

al
ue

Final Desired Value

41

HeatMap
Diagram

1. Exploration
List of
Critical
RegionsDomain

Expert

Worst-Case
Scenarios

+
Controller-

plant
model

Objective
Functions
based on

Requirements
2. Single-State

Search

Smoothness Responsiveness

20%
Overshoot

250 ms
Response Time

42

Inject Bug Finding Seeded Faults

Summary

• We found several interesting test scenarios (worst cases)
during Model-in-the-Loop (MiL) testing compared to what
our partner had found so far

• These scenarios are also run at the Hardware-in-the-Loop
(HiL) level, where testing is much more expensive:

MiL results -> test selection for HiL

43

Testing Simulink Models
(Closed Loop and Open Loop

Controllers)

Objectives

• Testing Simulink/Stateflow models in their entirety

• Without requiring plant models

• Without requiring automated test oracles

45

Simulink Testing Challenge I

Incompatibility

Existing testing techniques are not applicable to
simulation models (with time-continuous behaviors)

46

+
+

0.051
FuelLevelSensor

-0.05

100
0.8

+
-

Gain

Gain1

Add1

Add

1
FuelLevel

Continuous
Integrator

+
+

0.051
FuelLevelSensor

-0.05

100
0.8

+
-

Gain

Gain1

Add1

Add

1
FuelLevel

Discrete
Integrator

Sum

Incompatibility Challenge -- Example

47

Applicable Not Applicable

Simulation Model Code Generation
Model

Simulink Testing Challenge II

Low Fault-Revealing Ability

Existing testing techniques make unrealistic
assumptions about test oracles

48

Faulty Model Output

49

Correct Model Output

Low Fault-Revealing Ability
Example

Covers the fault and Covers the fault but

is Likely to reveal it is very unlikely to reveal it

Our Approach

Search-based Test Generation Driven
by Output-Diversity and Anti-Patterns

50

51

Search-Based Test Generation

Initial Test Suite

Slightly Modifying
Each Test Input

Repeat

Until maximum resources spent

S Initial Candidate Solution

Search Procedure

R Tweak (S)

if Fitness (R) > Fitness (S)

S R

Return S

Output-based Heuristics

Output-Based Heuristics

Failure Patterns

Output Diversity

52

Failure-based Test Genration

53

Instability Discontinuity

• Maximizing the likelihood of presence of specific failure
patterns in output signals

0.0 1.0 2.00.0 1.0 2.0
-1.0

-0.5

0.0

0.5

1.0

Time Time

0.0

0.25

0.50

0.75

1.0

Output

Output Diversity -- Vector-Based

54

Output

Time
Output Signal 2
Output Signal 1

55

Output Diversity -- Feature-Based

increasing (n) decreasing (n)constant-value (n, v)

signal features
derivative second derivative

sign-derivative (s, n) extreme-derivatives

1-sided
discontinuity

discontinuity

1-sided continuity
with strict local optimum

value

 instant-value (v)
constant (n)

discontinuity
with strict local optimum

increasing

C

A

B

56

Evaluation

How does the fault revealing
ability of our algorithm
compare with that of

Simulink Design Verifier?

Simulink Design Verifier (SLDV)

• Underlying Technique: Model Checking and SAT
solvers

• Test objective: Testing is guided by structural
coverage

57

Our Approach vs. SLDV

58

Faults 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

SLDV

SLDV

5 14 2 20 20 20 20 20 20 15 15

Faults

SLDV could not find the
faultSLDV found the fault

20 16 20 11 5 20 14 17 11 20 4Our
Approach

Our
Approach

• Our approach outperformed SLDV in revealing faults

The number of fault-revealing
runs of our algorithm (out of 20)

SimCoTest Tool

https://sites.google.com/site/simcotesttool/

https://sites.google.com/site/cocotesttool/

59

SimCoTest
Simulink Controller Tester

https://sites.google.com/site/simcotesttool/

60

Summary
• We evaluated SimCoTest on seven representative Delphi

Simulink models and one model from Bosch research lab

• Hands-on tutorial to ten Delphi engineers:

• “SimCoTest is useful for early stages of controller design to
identify and detect design flaws.”

• We found some issues in Delphi models

• We plan to follow further development of SimCoTest and its
commercialization

Tool Demos

Case Study
• Electro-Mechanical Braking (EMB)

• A public-domain model developed
by the Bosch Research lab
(http://cps-vo.org/node/20289)

• EMB Simulink model

• Consists of a physical plant model, a PID controller and a state-
flow

• Is simulated by a variable-step solver

• Contains float variables and float computation

62

http://cps-vo.org/node/20289

Demo of SimCoTest

• SimCoTest is able to identify the following error patterns in
EMB output

• Oscillation (marginal stability)

• Discontinuity

• Growth to infinity (instability and not marginally stable)

63

Fault Localization in
Simulink Models

64

4

1

2

5

3

� [Look-up
Table]

10 � [Switch]

273.15
�

�

[Switch]

1

2

NMOT

Clutch

Bypass

pIn

TIn

pOut

TOut

Pct2Val

-K-
N_SC PressRatioSpd

SC_Active
FlapIsClosedFlapPosThreshold

0 C T_C2K Incr�

1

2

1

2

3

1

1

2000

�

���

�

 ÷

�

�
�

�

0.15

Pmax

IncrPres
LimitP

T_K2C

TScaler

dT

CalcT

�

1.2
p_Co

dp

Subsystem1

Subsystem2

�

�-150
pComp pAdjust

1000

Fault Localization

65

A Simulink model

A test
suite

Statistical Debugging

66

Test
suite

t1

t2

t3

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

For O2 : Not executed
Executed, pas

s
Executed, fail

b2	

b1	

b3	 b4	

b5	

b6	 b7	

b8	

b9	

b11	b10	 b12	

Output1	

Output2	

Statistical Debugging

67

Test
Suite Status

t2

t3

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

1 1 0 0 1 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

Not executed
Executed, pas

s
Executed, fail

t1

For O2 :

b2	

b1	

b3	 b4	

b5	

b6	 b7	

b8	

b9	

b11	b10	 b12	

Output1	

Output2	

Statistical Debugging

68

Test
Suite Status

t3

t1 t2

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

2 1 0 1 2 2 1 2 1 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0

Not executed
Executed, pas

s
Executed, fail

For O2 :

b2	

b1	

b3	 b4	

b5	

b6	 b7	

b8	

b9	

b11	b10	 b12	

Output1	

Output2	

Statistical Debugging

69

Test
Suite Status

t1 t2 t3

✗

✗

Not executed
Executed, pas

s
Executed, fail

For O2 : b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

2 1 0 1 2 2 1 2 1 1 1 2

1 0 1 0 1 1 1 1 0 0 1 1

b2	

b1	

b3	 b4	

b5	

b6	 b7	

b8	

b9	

b11	b10	 b12	

Output1	

Output2	

Statistical Debugging

70

Test
Suite Status

t1 t2 t3

✗

✗

Not executed
Executed, pas

s
Executed, fail

For O2 : b1 b2 b3 b4 b5 b6 b7 b8 b9 b1
0

b1
1

b1
2

2 1 0 1 2 2 1 2 1 1 1 2

1 0 1 0 1 1 1 1 0 0 1 1

b2	

b1	

b3	 b4	

b5	

b6	 b7	

b8	

b9	

b11	b10	 b12	

Output1	

Output2	

Ranking

• Simulink blocks are ranked
according to likelihood of causing
output failures

• Engineers inspect Simulink blocks
using the generated ranking to
identify faulty block(s)

71

Block Score

b3 1.0

b7 0.6667

b11 0.6667

b1 0.5

b5 0.5

b6 0.5

b8 0.5

b12 0.5

b2 0.0

b4 0.0

b9 0.0

b10 0.0

Results
• We have developed, SimFL, a tool for automated fault

localization of Simulink models

• Our tool is able to help localize multiple faults in Simuilnk
models

• SimFL has been applied to three large Simulink models with
400 to 800 blocks containing two to five faults

• Using SimFL engineers need to inspect less than 3% of the
model blocks on average to localize faults

72

Statistical Debugging:
Drawbacks

73

Ranking Score

b6 1

b2 0.5

b3 0.5

b5 0.5

b7 0.5

b8 0.5

b9 0.5

b10 0.5

b12 0.5

b13 0.5

b14 0.5

b1 0

b4 0

b11 0

• Faulty blocks may not be
ranked high

• Many blocks may have the
same score

• Engineers may have to
inspect many blocks until
they find the faulty block(s)

Performance Improvement
• Engineers may fail to find fault(s) after inspecting the top rank

blocks

• Our improvements:

• Extending the test suites with test cases targeted at
revealing test cases

• Identifying heuristics to help engineers know situations
where statistical ranking cannot be further
refined/improved

74

Tool Demo

ASTech-SnT collaboration

Topics

• Stability analysis of nonlinear systems

• Analysis of performance and simulation (execution) time of
Simulink models

81

Stability Analysis

• Identifying the parts of the input space of a Simulink model
that may lead to violation of system stability requirements

• Identifying root causes of erroneous/unstable behaviors

• Investigating whether the problematic input regions can be
reduced by automatic parameter tuning

82

Analysis of Performance and
Simulation Time

• Identifying inputs, configurations, or blocks that are
responsible for simulation slowdown

• Severe performance degradations after changes in models
(regression performance analysis)

• Proposing ways to improve the simulation performance

83

.lu
software verification & validation
VVS

Automated Testing and Verification
of Cyber-Physical Systems

Software Verification and Validation (SVV) Lab
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg

Testing via Physics-based
Simulation

85

Testing via Simulation
(Limitations)

• Simulation scenarios are generated manually

• There are many simulation scenarios

• No guidance as to which scenarios should be selected to test
the system

86

Our Approach

• Automated testing of complex ADAS via physics-based
executable models of these systems and their environments

87

Challenges Our solution

Test input is large Metaheuristic search to focus testing
on worst case/critical behaviors

Simulation takes time Surrogate models to predict the
simulation outcome without running
simulations

PeVi Requirement

88

• Test objectives critical aspects:

• Time-To-Collision (TTC) is small

• The pedestrian is located near the car

• The pedestrian is at the boundary of the AWA

The PeVi system shall detect any pedestrian located
in the Acute Warning Area (AWA) of a vehicle

Our Search-based Test
Generation

• We use multi-objective search algorithm to generate test cases

• Three objectives: Minimum Distance to Car min{D(P/Car)},
Minimum Time To Collision Min{TTC}, and Minimum Distance to
AWA Min{D(P/AWA)}

• Input a vector (car-speed, person-speed, person-position (x,y),
person-orientation)

• Each search iteration calls simulation to compute objectives

89

Evaluation
• Given the same execution time, our approach is able to produce

higher quality solutions than baseline methods (Random Search)

• We provided engineers with 20 scenarios representing risky
situations (no detection in AWA, collision/no detection) by varying
weather conditions, roadside objects and ramped/curved road

• Scenarios helped engineers identify several critical behaviors of
PeVi that have not been previously identified by manual
simulation

• The scenarios are available at:
https://sites.google.com/site/testingpevi

90

An example critical scenario

91

Conclusion

92

• An automated effective testing approach for ADAS

• Formulated the generation of critical test cases as a multi-
objective search problem using the NSGA2 algorithm

• Improved the search performance, while maintaining the
accuracy, using surrogate models based on neural networks

• Generated some critical scenarios: no detection in the AWA, or
collision and no detection

Model-based development of
control systems

93

Hardware-in-the-Loop
Stage

Model-in-the-Loop
Stage

Simulink Modeling

 Generic
Functional

Model

MiL Testing

Software-in-the-Loop
Stage

Code Generation
and Integration

Software Running
on ECU

SiL Testing

 Software
Release

HiL Testing

Simulink Testing Challenges

• Complex models with several hundreds of blocks

• Mix of continuous and discrete behaviour

• Captures both hardware/physical components and
software/algorithms

• Mix of fixed-point and floating point computations

94

Controller Properties:
Smoothness

95
T/2 T

Test Objective is to
maximize O_sm

O_sm

Controller Properties:
Responsiveness

96

Test Objective is to
maximize O_r

O_r

Signal Features Classification

97

increasing (n)
decreasing (n)

constant-value (n, v)

signal features

derivative second derivative

sign-derivative (s, n)
extreme-derivatives

1-sided
discontinuity

discontinuity

1-sided continuity
with local optimum

1-sided continuity
with strict local optimum

 one-step
constant-value (v)

 all-step
constant-value (v)

value

 instant-value (v)

constant (n)

 instant-value (0) ...

...

 instant-value (minRminR)

...
...

... Always
Constant

1-step
Constant

...

...

...

discontinuity
with strict local optimum

v = 0v = 0

v = 0v = 0 v = 0v = 0 ...

...
...

 v = maxRv = maxR
 v = minRv = minR n = 1n = 1 n = kn = k

n = 1n = 1 n = kn = k

n = 1n = 1

n = 1n = 1

 s = 0s = 0 s = 1s = 1 s = �1s = �1

 instant-value (v)

v

k.�t0 k0.�t

A

k.�t0 k0.�t (k0 + n).�t

increasing (n)

B

C

1-sided continuity
with local optimum

k.�t0

D

discontinuity with
strict local optimum

k.�t0

E

• We define a set of basic features characterizing distinguishable
signal shapes

Feature Functions

98

• For each feature f in our feature classification, we define a
feature function Ff

• For a signal sg, the value of Ff(sg) quantifies the similarity
between shapes of the signal sg and the feature f

k.�t0

Always increasing

Ff (sg) =
KP
i=1

((sg(i ·�t)� sg((i� 1) ·�t)))�

|sg(i ·�t)� sg((i� 1) ·�t))|)

The higher the value of Ff(sg),
The more similar sg is to f

99

Output Diversity
Test Suite Generation Algorithm

O is either Ov or OfRepeat

Until maximum resources spent

P Initial number of segments

Test Suite Gneration Algroihtm

TS Tweak (TS, P)

If O (TS) > O (Best)

Best TS

Return TS

TS Initial test suiteBest

Execute (TS)

P P + 1

If (Coverage has reached a plateau less than 100%)

A whole test suite
generation algorithm

Failure patterns for Continuous
Outputs

100

0.0 1.0 2.00.0 1.0 2.0
-1.0

-0.5

0.0

0.5

1.0

(b)

Time Time

(a)

C
lu

tc
hC

tr
lS

ig
 O
ut
pu
t

0.0

0.25

0.50

0.75

1.0

A

B

C

0.0 1.0 2.00.0 1.0 2.0
-1.0

-0.5

0.0

0.5

1.0

(b)

Time Time

(a)

C
lu

tc
hC

tr
lS

ig
 O
ut
pu
t

0.0

0.25

0.50

0.75

1.0

A

B

C

Instability Discontinuity

SimCoTest Maturity

• Hands-on tutorial to ten Delphi engineers:

• “SimCoTest is useful for early stages of controller design to
identify and detect design flaws.”

• We are currently applying SimCoTest to a number of newly
developed (cutting edge) Delphi Controller models to help
engineers with testing/verification, and to better demonstrate
practical usefulness of SimCoTest

101

Failure-based Test Generation

102

Instability Discontinuity

0.0 1.0 2.0
-1.0

-0.5

0.0

0.5

1.0

Time

C
tr

lS
ig

 O
ut
pu
t

• Maximizing the likelihood of presence of specific failure
patterns in output signals

0.0 1.0 2.0
Time

0.0

0.25

0.50

0.75

1.0

C
tr

lS
ig

 O
ut
pu
t

Comparing SimCoTest with
Simulink Design Verifier

103

Fault No. 1 2 3 4 5 6 7 8 9 10 11
20

*SLDV

#OurApproach 16 11 5 20 14 17 11 20 4

12 13 14 15 16 17 18 19 20 21 22

*SLDV

20

20

20 20 15 15

Fault No.

No No No No No No No No No No

No YES

No

No No No No

* Did SLDV reveal the fault? (Yes/No)

#OurApproach 20 20

No

145 2 20

No No No No

Number of Fault Revealing Runs of our algorithm (Out of 20)

The only fault found by SLDV (fault 17), was also found by
SimCoTest with very high probability

